Bloomsbury Encyclopedia of Philosophers - Russell, Bertrand Arthur William, 3rd Earl Russell (1872–1970)
The Dictionary of Twentieth-Century British Philosophers


Content Type:

Biographical Entry


Britain, England

School of Thought:

Empiricism, Humanism, Logicism

Related Content

Russell, Bertrand Arthur William, 3rd Earl Russell (1872–1970)

Russell, Bertrand Arthur William, 3rd Earl Russell (1872–1970)
DOI: 10.5040/9781350052437-0372

  • Publisher:
    Thoemmes Continuum
  • Identifier:
  • Published Online:
Collapse All Sections

Bertrand Russell was born on 18 May 1872 at Ravenscroft, near Tintern in Monmouthshire and died on 2 February 1970 at Plas Penrhyn, Merionethshire, his home in Wales. He was the second son of Viscount Amberley and Katherine, daughter of the second Lord Stanley of Alderley, and the second grandson of Lord John Russell, who was created the first Lord Russell after a long political career during which he twice served as Prime Minister for Queen Victoria. In his youth, Russell was raised primarily by his grandmother, Lady Russell, his mother, father and grandfather having died when he was two, four and six respectively. Being freethinkers, his parents had willed that he and his brother, Frank, be raised in the custody of two atheists, but the will was overturned and both boys were made wards in Chancery upon petition of their grandparents. Educated at home by a series of Swiss and German tutors, Russell found the adult, religious atmosphere at Pembroke Lodge, his grandparents’ estate, gloomy and repressive. Cambridge was his first exposure to a larger social, intellectual and political world, and he embraced academic life enthusiastically upon his arrival there in 1890. He obtained a first in mathematics in 1893, and completed the Moral Sciences Tripos the following year. He remained at Trinity until 1916, when he was fined £110 and dismissed from college as a result of anti-war protests. Although he had been awarded membership in the Royal Society eight years earlier, it appeared that his academic career had come to an end. Two years later he was again arrested. This time he was jailed for five months.

Despite such setbacks, Russell became both famous and infamous for his contributions to a large variety of philosophical topics and an equally large variety of popular and unpopular social causes. Like Giuseppe Peano and Gottlob Frege, the two logicians who most influenced his logical writings, he helped erect the scaffolding of modern symbolic logic. Like Voltaire, to whom he also often has been compared, he wrote with style and wit and had an enormous audience. Throughout much of his life, he was Britain’s most influential and famous philosopher.

Russell became known as a result of his writings, not only in logic and philosophy, but in a wide variety of other areas including education, history, social and political theory, and religious studies. His most influential contributions include his defence of logicism (the view that mathematics is in some important sense reducible to logic), and his theories of definite descriptions and logical atomism. Along with G.E. Moore , Russell is generally recognized as one of the founders of analytic philosophy. Along with Kurt Gödel, he is also regularly credited with being one of the most important logicians of the twentieth century. Awarded the Order of Merit in 1949 and the Nobel Prize for Literature in 1950, Russell remained a prominent public figure until his death at the age of ninety-seven.

Russell’s contributions to logic and the foundations of mathematics include his discovery of Russell’s paradox, his detailed development of logicism, his development of the theory of types and his refining of the first-order predicate calculus.

Russell discovered the paradox that bears his name in 1901, while working on his Principles of Mathematics (1903). The paradox arises in connection with the set of all sets that are not members of themselves. Such a set, if it exists, will be a member of itself if and only if it is not a member of itself. The paradox is significant since, using classical logic, all sentences are entailed by a contradiction. Russell’s discovery thus prompted a large amount of work in logic, set theory, and the philosophy and foundations of mathematics.

Russell’s own response to the paradox came with the development of his theory of types in 1903. It was clear to Russell that some restrictions needed to be placed upon the original comprehension (or abstraction) axiom of naive set theory, the axiom that formalizes the intuition that any coherent condition may be used to determine a set (or class). Russell’s basic idea was that reference to sets such as the set of all sets that are not members of themselves could be avoided by arranging all sentences into a hierarchy, beginning with sentences about individuals at the lowest level, sentences about sets of individuals at the next lowest level, sentences about sets of sets of individuals at the next lowest level, and so on. Using a vicious circle principle similar to that adopted by the mathematician Henri Poincaré, and his own so-called ‘no class’ theory of classes, Russell was able to explain why the unrestricted comprehension axiom fails: propositional functions, such as the function ‘x is a set’, may not be applied to themselves since self-application would involve a vicious circle. On Russell’s view, all objects for which a given condition (or predicate) holds must be at the same level or of the same ‘type’.

Although first introduced in 1903, the theory of types was further developed by Russell in his 1908 article ‘Mathematical Logic as Based on the Theory of Types’ and in the monumental work he co-authored with Alfred North Whitehead , Principia mathematica (1910, 1912, 1913). Thus the theory admits of two versions, the ‘simple theory’ of 1903 and the ‘ramified theory’ of 1908. Both versions of the theory later came under attack for being both too weak and too strong. According to some, the theory was too weak since it failed to resolve all of the known paradoxes. According to others, it was too strong since it disallowed many mathematical definitions which, although consistent, violated the vicious circle principle. Russell’s response was to introduce the axiom of reducibility, an axiom that lessened the vicious circle principle’s scope of application, but which many people claimed was too ad hoc to be justified philosophically.

Of equal significance during this period was Russell’s defence of logicism, the theory that mathematics was in some important sense reducible to logic. First defended in his 1901 article ‘Recent Work on the Principles of Mathematics’, and then later in greater detail in his Principles of Mathematics and in Principia mathematica, Russell’s logicism consisted of two main theses. The first was that all mathematical truths can be translated into logical truths or, in other words, that the vocabulary of mathematics constitutes a proper subset of that of logic. The second was that all mathematical proofs can be recast as logical proofs or, in other words, that the theorems of mathematics constitute a proper subset of those of logic.

Like Frege, Russell’s basic idea for defending logicism was that numbers may be identified with classes of classes and that number-theoretic statements may be explained in terms of quantifiers and identity. Thus the number 1 would be identified with the class of all unit classes, the number 2 with the class of all two-membered classes, and so on. Statements such as ‘There are two books’ would be recast as statements such as There is a book, x, and there is a book, y, and x is not identical to y.’ It followed that number-theoretic operations could be explained in terms of set-theoretic operations such as intersection, union and difference. In Principia mathematica Whitehead and Russell were able to provide many detailed derivations of major theorems in set theory, finite and transfinite arithmetic, and elementary measure theory. A fourth volume was planned but never completed.

In much the same way that Russell used logic in an attempt to clarify issues in the foundations of mathematics, he also used logic in an attempt to clarify issues in philosophy. As one of the founders of analytic philosophy, Russell made significant contributions to a wide variety of areas, including metaphysics, epistemology, ethics and political theory, as well as to the history of philosophy. Underlying these various projects was not only Russell’s use of logical analysis, but also his long-standing aim of discovering whether, and to what extent, knowledge is possible. ‘There is one great question,’ he writes in 1911. ‘Can human beings know anything, and if so, what and how? This question is really the most essentially philosophical of all questions.’

More than this, Russell’s various contributions were also unified by his views concerning both the centrality of scientific knowledge and the importance of an underlying scientific methodology common to both philosophy and science. In the case of philosophy, this methodology expressed itself through Russell’s use of logical analysis. In fact, Russell often claimed that he had more confidence in his methodology than in any particular philosophical conclusion.

Russell’s conception of philosophy arose in part from his idealist origins. This is so, even though he believed that his one, true revolution in philosophy came about as a result of his break from idealism. Russell saw that the idealist doctrine of internal relations led to a series of contradictions regarding asymmetrical (and other) relations necessary for mathematics. Thus, in 1898, he abandoned the idealism that he had encountered as a student at Cambridge, together with his Kantian methodology, in favour of a pluralistic realism. As a result, he soon became famous as an advocate of the ‘new realism’ and for his ‘new philosophy of logic’, emphasizing as it did the importance of modern logic for philosophical analysis. The underlying themes of this ‘revolution’, including his belief in pluralism, his emphasis upon anti-psychologism and the importance of science, remained central to Russell’s philosophy for the remainder of his life.

Russell’s methodology consisted of the making and testing of hypotheses through the weighing of evidence (hence Russell’s comment that he wished to emphasize the ‘scientific method’ in philosophy), together with a rigorous analysis of problematic propositions using the machinery of first -order logic. It was Russell’s belief that by using the new logic of his day, philosophers would be able to exhibit the underlying ‘logical form’ of natural language statements. A statement’s logical form, in turn, would help philosophers resolve problems of reference associated with the ambiguity and vagueness of natural language. Thus, just as we distinguish three separate senses of ‘is’ (the is of predication, the is of identity and the is of existence) and exhibit these three senses by using three separate logical notations (Px, x = y and ∃x respectively), we will also discover other ontologically significant distinctions by being aware of a sentence’s correct logical form. On Russell’s view, the subject-matter of philosophy is then distinguished from that of the sciences only by the generality and the a prioricity of philosophical statements, not by the underlying methodology of the discipline. In philosophy, as in mathematics, Russell believed that it was by applying logical machinery and insights that advances would be made.

Russell’s most famous example of his ‘analytic’ method concerns denoting phrases such as descriptions and proper names. In his Principles of Mathematics Russell held the view that every denoting phrase (e.g., ‘Scott’, ‘blue’, ‘the number two’, ‘the golden mountain’) denoted, or referred to, an existing entity. By the time his landmark article, ‘On Denoting’, appeared two years later, in 1905, Russell had modified this extreme realism and had instead become convinced that denoting phrases need not possess a theoretical unity.

While logically proper names (words such as ‘this’ or ‘that’ which refer to sensations of which an agent is immediately aware) do have referents associated with them, descriptive phrases (such as ‘the largest number less than pi’) should be viewed as a collection of quantifiers (such as ‘all’ and ‘some’) and propositional functions (such as ‘x is a number’). As such, they are not to be viewed as referring terms but, rather, as ‘incomplete symbols’. In other words, they should be viewed as symbols that take on meaning within appropriate contexts, but that are meaningless in isolation. Thus, in the sentence ‘The present King of France is bald,’ the definite description ‘The present King of France’ plays a role quite different from that of a proper name such as ‘Scott’ in the sentence ‘Scott is bald.’ For example, letting K abbreviate the predicate ‘is a present King of France’, B abbreviate the predicate ‘is bald’, and s abbreviate the name ‘Scott’, Russell represents the former as ∃x[(Kx & ∀y(Kyy = x)) & Bx] and the latter as Bs.

This distinction between distinct logical forms allows Russell to explain three important puzzles. The first concerns the operation of the Law of Excluded Middle and how this law relates to denoting terms. According to one reading of the Law of Excluded Middle, it must be the case that either ‘The present King of France is bald’ is true or ‘The present King of France is not bald’ is true. But if so, both sentences appear to entail the existence of a present King of France, clearly an undesirable result. Russell’s analysis shows how this conclusion can be avoided. By appealing to the above analysis, it follows that there is a way to deny the sentence ‘The present King of France is bald’ without being committed to the existence of a present King of France, namely by accepting that ‘It is not the case that there exists a present King of France who is bald’ is true.

The second puzzle concerns the Law of Identity as it operates in (so-called) opaque contexts. Even though ‘Scott is the author of Waverley’ is true, it does not follow that the two referring terms ‘Scott’ and ‘the author of Waverley’ are interchangeable in every situation. Thus although ‘George IV wanted to know whether Scott was the author of Waverley’ is true, ‘George IV wanted to know whether Scott was Scott’ is, presumably, false. Russell’s distinction between the logical forms associated with the use of proper names and definite descriptions shows why this is so.

To see this, we once again let s abbreviate the name ‘Scott’. We also let w abbreviate ‘Waverley’ and A abbreviate the two-place predicate ‘is the author of’. It then follows that the sentence ‘s = s’ is not at all equivalent to the sentence ∃x[Axw & ∀y(Aywy = x) & x = s]’.

The third puzzle relates to true negative existential claims, such as the claim ‘The golden mountain does not exist.’ Here, once again, by treating definite descriptions as having a logical form distinct from that of proper names, Russell is able to give an account of how a speaker may be committed to the truth of a negative existential without also being committed to the belief that the subject term has reference. That is, the claim that Scott does not exist is false since the sentence ‘∼∃x(x = s)’ is self-contradictory. (After all, there must exist at least one thing that is identical to s since it is a logical truth that s is identical to itself!) In contrast, the claim that a golden mountain does not exist may be true since, assuming that G abbreviates the predicate ‘is golden’ and M abbreviates the predicate ‘is a mountain’, there is nothing contradictory about ‘∼∃x(Gx & Mx)’.

Russell’s emphasis upon logical analysis also had consequences for his metaphysics. In response to the traditional problem of the external world which, it is claimed, arises since the external world can be known only by inference, Russell developed his famous 1910 distinction between ‘knowledge by acquaintance and knowledge by description’. He then went on, in his 1918 lectures on logical atomism, to argue that the world itself consists of a complex of logical atoms (such as ‘little patches of colour’) and their properties. Together they form the atomic facts which, in turn, are combined to form logically complex objects. What we normally take to be inferred entities (e.g., enduring physical objects) are then understood to be ‘logical constructions’ formed from the immediately given entities of sensation, viz. ‘sensibilia’. It is only these latter entities that are known non-inferentially and with certainty.

According to Russell, the philosopher’s job is to discover a logically ideal language that will exhibit the true nature of the world in such a way that the speaker will not be misled by the casual surface structure of natural language. Just as atomic facts (the association of universals with an appropriate number of individuals) may be combined into molecular facts in the world itself, such a language would allow for the description of such combinations using logical connectives such as ‘and’ and ‘or’. In addition to atomic and molecular facts, Russell also held that general facts (facts about ‘all’ of something) were needed to complete the picture of the world. Famously, he vacillated on whether negative facts were also required.

In the broader public sphere, Russell also has had widespread influence. This influence stems largely from three main sources: his long-standing social activism, his many writings on the social and political issues of his day, and his popularizations of technical writings in philosophy and the natural sciences.

Among Russell’s many popularizations are his two best-selling works, The Problems of Philosophy (1912) and A History of Western Philosophy (1945). Both of these books, as well as his numerous but less famous books popularizing science, have done much to educate and inform generations of general readers. Naturally enough, Russell saw a link between education, in this broad sense, and social progress. At the same time, Russell is also famous for suggesting that a widespread reliance upon evidence, rather than upon superstition, would have enormous social consequences: ‘I wish to propose for the reader’s favourable consideration,’ says Russell, ‘a doctrine which may, I fear, appear wildly paradoxical and subversive. The doctrine in question is this: that it is undesirable to believe a proposition when there is no ground whatever for supposing it true.’

Still, Russell is best known in many circles as a result of his campaigns against the proliferation of nuclear weapons and against Western involvement in the Vietnam War during the 1950s and 1960s. However, Russell’s social activism stretches back at least as far as 1910, when he published his Anti-Suffragist Anxieties. Russell also ran unsuccessfully for Parliament (in 1907, 1922 and 1923) and, together with his second wife, founded and operated an experimental school during the late 1920s and early 1930s.

Although he became the 3rd Earl Russell upon the death of his brother in 1931, Russell’s radicalism continued to make him a controversial figure well through middle age. While teaching in the United States in the late 1930s, he was offered a teaching appointment at City College, New York. The appointment was revoked following a large number of public protests and a 1940 judicial decision which found him morally unfit to teach at the college.

In 1954 he delivered his famous ‘Man’s Peril’ broadcast on the BBC, condemning the Bikini H-bomb tests. A year later, together with Albert Einstein, he released the Russell-Einstein Manifesto calling for the curtailment of nuclear weapons. In 1957 he was a prime organizer of the first Pugwash Conference, which brought together a large number of scientists concerned about the nuclear issue. He became the founding President of the Campaign for Nuclear Disarmament in 1958 and was once again imprisoned, this time in connection with anti-nuclear protests, in 1961. The media coverage surrounding his conviction only served to enhance Russell’s reputation and to further inspire the many idealistic youths who were sympathetic to his anti-war and antinuclear protests. Upon being awarded the Nobel Prize for Literature in 1950, Russell used his acceptance speech to emphasize, once again, themes related to his social activism.


An Essay on the Foundations of Geometry (Cambridge, 1897).

The Principles of Mathematics (Cambridge, 1903).

‘On Denoting’, Mind, vol. 14 (1905), pp. 479–93 ; repr. in Essays in Analysis (1973), pp. 103–19.

‘Mathematical Logic as Based on the Theory of Types’, American Journal of Mathematics, vol. 30 (1908), pp. 222–62 ; repr. in Logic and Knowledge (1956), pp. 59–102; and in Jean van Heijenoort, From Frege to Gödel (Cambridge, Mass., 1967), pp. 152–8.

‘Knowledge by Acquaintance and Knowledge by Description’, Proceedings of the Aristotelian Society, vol. 11 (1910–11), pp. 108–28 ; repr. in Mysticism and Logic (1963), pp. 152–67.

(with Alfred North Whitehead), Principia mathematica , 3 vols (Cambridge, 1910, 1912, 1913); 2nd edn, vol.1 (1925), vols 2 and 3 (1927); abridg. as Principia mathematica to *56 (Cambridge, 1962).

The Problems of Philosophy (London and New York, 1912).

Our Knowledge of the External World (Chicago and London, 1914).

Principles of Social Reconstruction (1916); repr. as Why Men Fight (New York, 1917).

Political Ideals (New York, 1917).

Mysticism and Logic and Other Essays (London and New York, 1918); repr. as A Free Man’s Worship and Other Essays (1976).

‘The Philosophy of Logical Atomism’, The Monist, vol. 28 (1918), pp. 495–527 ; vol. 29 (1919), pp. 32–63, 190–222, 345–80; repr. in Logic and Knowledge (1956), pp. 177–281.

Introduction to Mathematical Philosophy (London and New York, 1919).

The Analysis of Mind (London and New York, 1921).

A Free Man’s Worship (Portland, Maine, 1923); repr. as What Can a Free Man Worship? (Girard, Kansas, 1927).

‘Logical Atomism’, in J.H. Muirhead, Contemporary British Philosophers (1924), pp. 356–83 ; repr. in Logic and Knowledge (1956), pp. 323–43.

On Education, Especially in Early Childhood (1926); repr. as Education and the Good Life (New York, 1926); abridg. as Education of Character (New York, 1961).

The Analysis of Matter (London and New York, 1927).

Why I Am Not a Christian (London and New York, 1927).

Marriage and Morals (London and New York, 1929).

The Conquest of Happiness (London and New York, 1930).

Power: A New Social Analysis (London and New York, 1938).

An Inquiry into Meaning and Truth (London and New York, 1940).

A History of Western Philosophy (New York, 1945; London, 1946).

Human Knowledge: Its Scope and Limits (London and New York, 1948).

Authority and the Individual (London and New York, 1949).

The Philosophy of Logical Atomism (Minneapolis, 1949); repr. as Russell’s Logical Atomism (Oxford, 1972).

Human Society in Ethics and Politics (London and New York, 1954).

Logic and Knowledge: Essays, 1901–1950 (London and New York, 1956).

Portraits From Memory and Other Essays (London and New York, 1956).

My Philosophical Development (London and New York, 1959).

The Autobiography of Bertrand Russell , 3 vols (1967, 1968, 1969).

The Collected Papers of Bertrand Russell , 34 vols (London and New York, 1983–).

Further Reading

Ayer, Jules, Russell (1972).

Blackwell, Kenneth and Harry Ruja, A Bibliography of Bertrand Russell , 3 vols (1994).

Clark, Ronald, The Life of Bertrand Russell (1975).

Clark, Ronald (ed.), The Selected Letters of Bertrand Russell , 2 vols (1992, 2001).

Clark, Ronald, The Cambridge Companion to Bertrand Russell (Cambridge, 2003).

Hager, J., Continuity and Change in the Development of Russell’s Philosophy (Dordrecht, 1994).

Hylton, W., Russell, Idealism and the Emergence of Analytic Philosophy (Oxford, 1990).

Irvine, D. (ed.), Bertrand Russell: Critical Assessments , 4 vols (1999).

Irvine, D. and Gary A. Wedeking (eds), Russell and Analytic Philosophy (Toronto, 1993).

Jager, Ronald, The Development of Bertrand Russell’s Philosophy (1972).

Monk, Ray, Bertrand Russell , 2 vols (1996, 2000).

Moorehead, Caroline, Bertrand Russell (New York, 1992).

Schilpp, Arthur, The Philosophy of Bertrand Russell , 3rd edn (New York, 1963).

Slater, John, Bertrand Russell (Bristol, 1994).